
Context-Free Grammars with Multi-Letter Symbols
Martha Kosa

The theoretical ideas that you are studying have been used to help develop the compilers
for the programming languages that you use today. Compilers are complex systems.
They take the code that you write in your favorite language (Java, C++, Python, etc.) and
translate it to an alternate form that can be executed by the computer. They check to see
that your code obeys the rules of its language as an early step. You know about rules;
they are the basis for the grammar for a language. Most features (but not all) of modern
programming languages are context-free.

We share below links to information about the specifications for three widely used
programming languages: C++, Java, and Python (in alphabetical order for neutrality, even
though JFLAP was written in Java ☺).

https://isocpp.org/std/the-standard provides information about the C++ language
standard.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf provides
information about C++ Language Specification. The discussion starts at page 1161, and
the grammar starts at page 1269.

http://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html provides information about the
Java language specification.

https://docs.python.org/3/reference/grammar.html provides information about the Python
language specification.

Each of these languages has hundreds of grammar rules; they need to specify the rules for
classes, methods, variable declarations, constants, assignment statements, loops, and
decision statements. JFLAP was not designed to handle huge grammars, so we will
explore simple subsets of the languages.

One of the first things you did in your beginning programming class was to learn how to
use variables to store data. You had to determine the variable's type (integer, float, etc.)
and give the variable a name. You also needed to initialize the variable's value before
using the variable. You could declare as many variables as you needed. We will keep
things simple. We will assume one types: int. We will allow variable names consisting
of at least one lowercase letter chosen from the set {a,b}. We will assume that variables
will be initialized to constants containing at least one decimal digit; to shorten our
grammar, assume the digits are in the set {0,1,2}.

Since we are allowing multiple variable declarations separated by semicolons (C++/Java-
style punctuation), we will need a recursive grammar rule. Since we are not required to

https://isocpp.org/std/the-standard
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf
http://docs.oracle.com/javase/specs/jls/se7/html/jls-2.html
https://docs.python.org/3/reference/grammar.html

use variables in our programs (although we wouldn't be able to do a lot of interesting
things), our grammar can generate the empty string .
 as
Try It!

1. Start JFLAP 8.0.
2. Select Help > Preferences ... to begin.
3. If the Multi-Char Default Mode radio button is not selected, select it.
4. Click the Done button.
5. From the main JFLAP GUI, click the Grammar button.
6. Enter two rules: S T;S and S.
7. T will be responsible for generating an individual assignment statement. Its rule

will have a declaration part preceding an assignment part. The declaration part
begins with int and ends with a variable name. The assignment part begins with =
and ends with an integer constant.

8. It may be helpful to introduce two new nonterminal symbols D and A. Enter the
T rule.

9. D will be responsible for generating a declaration. A declaration must start with
int and end with a variable name. It may be helpful to introduce a new
nonterminal symbol V. Enter the D rule.

10. If your terminal alphabet T does not contain int as a symbol, you may need to edit
your terminal symbols. You can select a terminal symbol and modify it by typing
your desired character sequence. You may need to edit the righthand side of
associated grammar rules to fix things.

Your grammar so far should look similar to the following:

1. Now we can do the assignment part. An assignment must start with a = and end
with an integer constant. It may be helpful to introduce a new nonterminal
symbol C. Enter the A rule.

2. What have we not done yet? We need V rule(s) and C rule(s). Recursion will be
involved because the variable names can have arbitrary positive length and the
constants can have arbitrary positive length. The only constant which should
begin with a 0 is 0 itself. You can introduce new nonterminal symbols as
necessary. Enter the V and C rules and any additional rules with your new
nonterminal symbols.

Your grammar should look similar to the following:

1. Save your grammar with a descriptive file name.

Now we will do some parsing of valid and invalid strings.

Try It!

1. In the current version of JFLAP 8.0, Input > User Control Parse is disabled, so
we will select Input > Brute Force Parse to practice with parsing.

2. Enter int a = 0; in the Input text field and click the Set button or press the Enter
key.

3. Click the Step button until you see notification that the input string has been
accepted. If you are impatient, you can click the Complete button.

4. How many current derivations are available at the end? Why?
5. You can change to Derivation View from Brute Parse Table in the combo box to

produce the parse tree or derivation table via the choice of the tabbed pane.
6. Click the Change button and update the Input text field to contain int a = 01;

and repeat the parsing process.
7. How many current derivations are available at the end? Why?
8. Click the Change button and update the Input text field to contain int a = 10;

and repeat the parsing process.
9. Click the Change button and update the Input text field to contain int ab = 10;

and repeat the parsing process.
10. Click the Change button and update the Input text field to contain int a = 0; int

ab = 10; and click the Set button or press the Enter key.
11. How many sentential forms were generated before the string was accepted?
12. Try some other valid and invalid strings. You may exhaust the resources of

JFLAP's brute force parser. Real compilers do not perform brute force parsing;
they use much more efficient algorithms.

We have just gotten a taste of what is involved when parsing assignment statements.
What about some other statements? Decisions are very important in computer programs.
We use if-else statements to handle decision making. An if-else statement starts with the
keyword if, followed by a condition enclosed in a set of parentheses (for simplicity, we
are assuming the keyword cond for condition) and a statement list afterward; remember
that in a running program, the condition is evaluated, and the statement list is executed
only when the condition is true. Next follows a placeholder for an optional else part to be
executed if the condition is false. This part is either just the keyword fi (not valid in C++/
Java/Python) or the keyword else followed by a statement list and finally the keyword fi.
With fi, we don't need curly braces for grouping. A statement list is either empty or a
statement followed by a statement list. For simplicity, we will assume two types of
statements: if-else and the keyword stmt immediately followed by a semicolon (we know
that this is not valid in C++/Java/Python). This description allows for nesting of if-else
statements. Decisions can be chained together as needed to solve a problem.

Try It!

1. Create a new grammar file in JFLAP (make sure Multi-Char Default Mode is
selected in Help > Preferences).

2. Enter and edit rules as needed to produce the grammar shown below.
3.
4. Now let's do some parsing.
5.
6. What is the simplest string generated by the grammar? It will just be an if

followed by (cond) followed by an empty statement list followed by fi. Verify
that the described string is valid. Remember that brute force parsing is what is
currently available in JFLAP 8.0.

7. What is the next simplest string generated by the grammar? It will be a simple
modification of the above string that includes the keyword else. Verify that the
described string is valid.

You should see something like the following for the derivation of the described string.

1. Let's make some nonempty statement lists. Parse the string if (cond) stmt; stmt;
else stmt; fi.

2. How many sentential forms were generated before the string was accepted?
3. Let's do some nesting. Parse the string if (cond) if (cond) stmt; else stmt; fi fi.
4. How many sentential forms were generated before the string was accepted?
5. Remove a semicolon from the parse string. What happens?

Congratulations! You have explored building some context-free grammars with symbols
consisting of multiple letters and parsing with them. These multi-letter symbols can
represent keywords in programming languages. Hopefully you have a better appreciation
for the compiler writers whose work allows you to write code in high-level languages.

